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PHASE T

ANALYSIS OF THERMAL TEST ERRORS RESULTING FROM
IMPERFECTLY COLLIMATED SOLAR SIMULATION BEAMS

1.0 INTRODUCTION

The document contained herein represents the final technical report

on Phase I of Jet Propulsion Laboratory Contract No. 951330.

An ideal solar simulator source is considered to be an optical system
which provides an incident Tllumination field on the surface of a test
item, the properties of which are independent of position on any portion of
the test item which has an unobstructed view of the source. A collimated
solar simulator source provides an illumination field which is entirely
within a total cone angle identical to that of the sun, 0° 32! in earth's
orbit. A decollimated source provides a field, the cone angle of which

is larger than that of a perfectly collimated source.

One of the problems associated with thermal testiﬁg of a spacecraft
in a space simulation chamber is that of evaluating errors due to non-

collimation of simulated solar light beams in the chafiber. This report is

PR
concerned with numerical evaluation of two of the effects of noncollimation:

(1) in incideﬁg eénergy flux on black flat surfaces at various angles to the

mean light ray; (2) in incident energy flux on black flat surfaces in the

region of shadows (penumbra) cast by various surfaces due to the decollimated

solar simulator sources.

The technique used to calculate the required radiation shape factors

represents a departure from the standard method of double\integrating a scalar

function associated with the intensity distribution of the emitter (source)

“l=



and geometries of the emitter and receiver. The power transmitted from

a differential element of source to a point on a receiver can be represen-
ted by a vector since the direction from which the power comes is as impor-
tant as its magnitude. The double integrals which must be evaluated in
conventional methods can frequently be expressed as integrals of the scalar

(dot) product of a receiving surface normal vector and a power vector from

a point on the source to a point on the receiver. For the sources and

shading bodies considered in this report, evaluation of the vector integral
is equivalent to calculating the area of the visible portion of the source

and locating the centroid of that visible area.

The numerical results presented are in the form of energy flux density
distributions within penumbrae for various shaded surfaces illuminated by
solar simulation models corresponding to: (a) a uniformly radiating cir-
cular disc and (b) a module source with each module being a uniformly

radiating circular disc. The shaded surfaces considered are:

(1) Single knife edge
(2) Knife edge with a diffuse or a specular skirt
(3) Double knife edge

(4) Rectangular "cylinder' having diffuse or specular reflective

properties.

(5) Circular cylinder having diffuse or specular reflective properties.

The actual solutions were implemented through the use of digital cal-
culating programs. However, the methods of solution outlined are applicable

to other forms of calculations. ;



2.0 METHOD OF ANALYSIS

A detailed description of the analytic approach used in obtaining
solutions is presented in Section 2.1. The application of the method
detailed in Section 2.1 to the general class of unshaded and shaded sur-
faces considered in this report is described in Section 2.2. The solu-
tions corresponding to particular shaded surfaces illuminated by a uniform
solar simulator source are presented in Sections 2.3 through 2.7. Solu-
tions appropriate to module solar simulator sources are presented in

Section 3.0.

2.1 DESCRIPTION OF ANALYTICAL APPROACH

Energy Exchange Between Two Black Bodies

Consider two black bodies separated by nonabsorbing media. Lét the
hotter body, the emitter, be referred to as A! and the receiver be refer-

red to as AZ' The geometry under consideration is shown in Fig. 1.

—— N

normal to Al
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The rate of radiation from a differential area on A dA], to a

1’
differential area on the receiver, dAz, will be proportional to the
apparent area of the emitter, dA‘, viewed from dA2 of dA‘cosﬂ‘, the
apparent area of interceptor, dAZ’ viewed from dA, or dAzcosﬂz, and
inversely proportional to the square of the distance separating dA] and
dA, (Ref. 1). Therefore, referring to Fig. 1

I]dA]cosﬁldAzcosﬂ2

d(dq,,) = > (2.1.1)

where

Radiatjion leaving surface dA] that is intercepted
by dAZ'

[}

d(dq,,)

I, = Intensity of radiation and is defined as the radiant
energy propagating in a particular direction per

unit solid angle per unit area dA, as projected on a
plane perpendicular to the direction of propagation.

Now note that

dA]cosﬂ] = projected area of dAl in direction ﬂ‘
dAzcosﬂ2
— 3 = solid angle subtended by dA2 at dAI
r
I]dA]cosﬂ]
d(dqllz) = — dAZo::osfb2 ' (2.1.2)

-4



Transition to Vector Notation

Define a vector dE that has the same direction as an arbitrary vector
T and a magnitude equal to the energy flux density from an area dA‘ to an
area normal to r (dAzcosﬂz). If r is much larger than any dimension fixing
A, or A2, the source, A], can be considered on the surface Qf a sphere of

i
radius, r, and centered at dA. Then ﬂ] = 0 and from Fig. 1 and Eq. 2.1.2

1 I‘dA‘
| =
dE121— 0 (2.1.3)
r
and
LA rT
dE‘2 = ——2——-{?} (2.1.4)
r N .
Let
3\72 = vector having magnitude dA2 and direction normal to
plane of A2 ‘
dA2 = dAZ{E} (2.1.5)
Since

A°B = AB cos (Lbetween A and B)

Eq. (2.1.2) can be expressed using vector notation simply as

d(dq)=ﬂdAE ﬁ:-’&'ﬁ-'—f (2ll6)
12 r.2 2.r ‘ ~dA2 2 12 e
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where the minus sign is due to the fact that dA_and dE

directions as indicated in Fig. 2.

FiGg. 2

The energy flux at dA2 due to the complete source is found by integrating

over A] and interchanging the order of scalar product and the integration.

From Eq. (2.1.6)

da), = - dAz'de‘z (2.1.7)

or, in general

np

dq (2.1.8)

-6
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Equation (2.1.8) exhibits the principle that the integrated radiation
from all parts of the actual source, S, to dA can be represented by radia-
tion from a single point source. Care must be taken in using this fact,
since S must be defined to include all areas of source ''seen'' on the
positive. side of dA and only those areas. This last rule is interpreted
by the example in Fig. 3. The area, S, must inciude S‘ (the visible part
of a direct source composed of S, and SZ) and S, (the visible part of a

reflector ''source' between the real source and dA).

s, or S3 (since dA cannot ''see'' them) nor S5 (since S5 is not illuminated).

Source

Reflector:

Area S must not include

U




Referring to Fig. 3 and Eq. 2.1.7, it is evident that S, and Sh can

1

be treated separately, so that
E=E1+Eh=de+de
) S] SZ

or, in general

dE (2.1.9)

1=

3

0
—

where the Si are conveniently separable areas of direct and reflected

illumination.

The next question which arises is that of evaluating the effective
position of a point source which represents the visible portion of an
otherwise simple shape. It is obvious from symmetry considerations that

the equivalent point source for a circle is at the center of the area.

For uniform intensity surfaces on a spherical source, the.location of

_the equivalent point source is at the centroid of the visible area, and for

nonuniform intensity, it is at the centroid found by weighting the differen-
tial area elements, dS, with the local intensity. For surfaces not on a
sphere, the equivalent point passes through the centroid of the area
weighted by li . These facts are evident from the definition of E given

.
in Eq. 2.1.h.

m}
Wb

f ;f_z{'_::}ds | (2.1.10)

Svisible

-8




where, in Eq. 2.1.4, dS = dAI and I = I -

Equation (2.1.10) has exactly the form used in elementary mechanics to°
find centroids of weighted areas. The only difference is that the vector
E does not have units of distance and hence does not end on the physical

centroid of the surface in question. However, E", defined by

;[ E{
T2 E = —r
I I
f rz ds f 2dS

is a vector which terminates at the weighted centroid, and Eq. (2.1.11)

(2.1.11)

shows that E is merely a scalar multiple of E'

2.2 METHOD OF ANALYSIS FOR UNSHADED AND SHADED SURFACES - GENERAL

The method of analysis was simplified by the following assumptions

(1) The source is on the surface of a sphere centered at dA, i.e,

dE is considered normal to the source for any point in the

penumbra.

(2) The distance from any point in the penumbra to the séurce is

much larger than any other characteristic dimension.

(3) Lower order trigonometric approximations are appropriate, i.e.,
sin (D/2) = tan (D/2) = D/2, and cos (D/2) = 1 - 02/8.

where D is the solar field angle and defines the cone of radiation.




Unshaded Surface

With no umbra or penumbra present, an element area dA "sees'' the
entire source. Consider two different solar simulator sources each with

an intensity distribution that possesses axial symmetry. Then
E,' = E° _ (2.2.1)

where E' is defined in Eq. (2.1.11). If it is assumed that the magnitude

of the total power from each source is the same, then from Eq. (2.1.3)
= {E,| (2.2.2)

or

fI]dS f.Ist
— = - _ (2.2.3)
R ,

Inspection of Egs. (2.1.11), (2.2.1) and (2.2.3) leads to the result

(2.2.4)

m|
"
m|

In general, all solar simulator;sources of equal power that have
intensity distributions that bossess axial symmetry have the same power
vector. Furthermore, of most importance, for unshaded geometriés all
ideal solar simulator sources with the same E vector are eqqivalent to

the same point source and produce energy flux density on a flat black

=10



et e o e =, R R g BB it

(@

plate given by

d = dA
r.TK‘ = E{EE} (2.2.4%a)

independent of the source intensity distribution within the symmetry

restrictions and independent of the degree of decollimation.

The effect of incident angle on the energy flux density on unshaded

surfaces is now evident.since, by definition of the scalar product of two

vectors, Eq. (2.2.4) is evaluated as

d9 E cos B : (2.2.5)
where 8 ='angle between E and dA vectors. Therefore, the energy flux den-
sity on unshaded surfaces varies as the cosine of the angle of incidence, B,

for all symmetric sources.

Shaded Surface

When a body is placed between the éburce and receiver, a point on
the receiver in the penumbra due to the shading body has an obstructed
view of the source. If diffraction effects are ignored, then, from
simple geometric considerations, it can be reasoned that for each point
in the penumbra there is some plane contained in the shading body

perpendicular to the mean light ray that acts as the particular shading

-1



body to that point. That is, every shading body may be considered composed

of single knife edges. It follows that the solution for a single knife

edge and the other shading bodies are intimately related.

The solutions

for the various shading bodies are obtained using the energy flux density

distribution corresponding to a single knife edge and geometric properties

i associated with the various penumbrae.

.

2.3 METHOD OF ANALYSIS - SINGLE KNIFE EDGE

Using the principle of replacement of the visible source by an equiva-

lent point source, Eq. (2.1.8), the problem is reduced to finding the area

and centroid of the circular segment of ‘the part of the source which is

‘ visible from each point in the penumbra. The problem is described, pictorially,

in Fig. 4.

centroid of
visible area

\ penumbra
unshaded %

. | (a)

FIG. 4

(b)

-12-




in Fig. 5.

\\\\ x?" ‘B
# \\i y

FIG. 5

The power incident on an area element dA is

6 T
dg = -dA* E = Ecos[@-b{%-D—c}JdA

The energy flux density is

1
(3-0{'5-

l
1

c10®
——

The detailed geometry and the natural parameters of the system are shown

‘"'top view'"
of source

(2.3.1)

(2.3.2)

-13-




Utilizing the geometrical properties of a circular segment, we find

for a uniform source

1
(@-3 sin2) P 1a
E = T f 2 (2.3.3)

r

The energy flux density at dA is, when normalized against the value

which would be found outside the shadow,

1 1 O ]
-1 {a-—-z- sin2a} cos{p - D {E - -6-—}

5 dg ids |70 _ 1
Q=a cosﬂf 2 T cosB
r
S
- or
] 6c
A cosif -D 29
Q = —
ATotalcC’SB
where
20 ‘
a=.cos-‘{l-—D—T- o<a<TT
and

% _ 1_1[ sina )
D 2 3 |la - sinacosc

(2.3.4a)

(2.3.4b)

(2.3.5)

(2.3.6)

==



Equation (2.3.4b) shows that in calculating the relative flux den-

sity in the penumbra there are two effects:

(1) The magnitude of the incident E vector is reduced by -

Avisible/Atotal
(2) The direction of the E vector is changed so that it passes
through the centroid of the visible area rather than through

the centroid of the total area of the source.

Now consider the knife edge fixed in position at the conical axis.
The effect of considering the knife edge fixed as compared to a knife edge

at various positions of insertion is discussed in Appendix A. The asso-

ciated geometry for the fixed knife edge is shown in Fig. 6.

_ >l
\<2/// D/2 ?

FIG. 6

-15-



in Fig. 6, R = distance from the receiver to the source. Note for

R>>d

6y
6,-6, = D-6, = D-{’I - 3—-}- (213.7)

~ Therefore, the position in the penumbra may be expressed in terms of

6,/D.

The next step in the analysis involves the relationship between any
given point in the penumbra and BT/D. Consider an orthogonal coordinate
system centered at A. The equations for the ray trajectories are given as:

(z)Aa, = tan 8y (2.3.8)
(Z)Ax, = tan 6,y (2.3.9)
The equation for the receiving surface is given as

@)1y = tan By +d (2.3.10)

The y intercept of a general ray and the receiving surfaée is given by

Y 7 tan 6, - tan B (2.3.1)

-16-



so that

and from Eq. (2.3.11)

1

(2.3.12a)

-~

(2.3.12b)

1! = -
a'x'cosp d {itan 9] - tan B

Solving for tan 62

1
tan 62 -~ tan B }

tan 62 = tan £ + i

(2.3.13)

. a . .
Let us examine the term 2X_ . From similar triangles

ab ) 2 sin -E
d d
- R

with the assumptions

<< 1

sin {2 =2
2 2

Equation (2.3.14) reduces to

- 1[-%

ab = dD

(2.3.14)

(2.3.15a)

(2.3.l5b)

(2.3.16)

-17-




so that

a'x! a'x' _ a'x' ja'b’

a "~ P =0 a'b"{ ab }' - (2.3.17)
where

a'x!

3'bT location in penumbra given as a fraction of the

total length of the penumbra

Using Eq. (2.3.12b)

1 1 '
IRt = -
a'b’ cosp d [ tan 9] - tan B tan(lSO-GI) - tan B}
(2.3.18)
1R
Combining Eq. (2.3.16) with Eq. (2.3.18) and solving for aa: yields
a'b' _ 2
ab D cosB { ‘{ an } (2.3.19)
tan 6
tane
Now combining Eq. (2.3.19), (2.3.17) and (2.3.13) and noting
1 - ab . D
tan 6, T2 2 (2.3.20)
yields
1 - %-tanﬁ ‘
tan 62 = tan P + " _]__{ ] a|xi—}- (2.?.2])
1 ]
2 l+-l-2)-tanB a'b J

~18-




but referring to Fig. 6

] - x _ 3o-a _ lab ax
tan 92 T d d 2 d d
or using Eq. (2.3.16)
1 ol ax
@ e, " D {2 - ab} | (2.3.22)
but
0 )
ax T _
2 o= -5 , (2.3.23)
so that
e
1 T 1
tan 6, - D{T)_- 2} (2.3.24)

o
Finally, the functional relation between 1;- and the position in the

penumbra is given by
b ] + X (2.3.25)
with tan 6, given in Eq. (2.3.21).

The position of the conical axis in the penumbra as a fraction of

the total penumbra length is given as

-19-




D
;-'—b—r = _;' {' +‘2‘ tan B} (2-3'26)

The method of solution for the single knife edge is outlined as
follows:

(1) For D and B = constant, calculate tan 6, from Eq. (2.3.21)

[ JN |
. sev s a'x
as a function of position in penumbra, 35

2]
| P |
(2) For a given §T§T-with a corresponding tan 92, calculate El

from Eq. (2.3.25)

2]
(3) Using the BI-from step 2, calculate the relative energy flux

density from Eqs. (2.3.5), (2.3.6) and (2.3.ha)

2.4 METHOD OF ANALYSIS - KNIFE EDGE WITH A SKIRT

The characteristic of the flux density distribution in the penumbra
will depend on the reflective properties of the skirt (flat plate) as well
as the reflectance. The possible conditions considered in this report are

indicated in Table T.

«20=-




TABLE X

Reflective
Property Reflectance
1
Specular 0.0 1.0
!
Diffuse 0.0 ! 1.0

Obviously, for reflectance
bution for the specular or diffuse skirt will be identical.
of analysis for a specular skirt and diffuse skirt with reflectance

" is indicated in Sections 2.4.1 and 2.4.3, respectively.

0.0 (black body), the flux density distri-

2.4.1 Specular Skirt, Reflectance = 1.0

A specular reflective surface is defined as a surface that reflects
incident energy according to Snell's law; i.e., the angle of reflection

equals the angle of incidence.

The particular geometry associated with

a specular skirt is shown in Fig. 7.

The method




| -

FIG. 7

Consider a point x on the receiver. Due to the sk’lri, the'radiatloru
from the area of the source indicated byAB in Fig. VIIS_éut.off. However,
due to specular reflection x ''sees' the mirror image of area AB, i.e., x
sees" A'B'. in fact, any point on the receiver (0 < ax < ao) 'sees'' in
the specular skirt an image of the part of the source which is obscured
by tﬁe skirt. Therefore, the effect of the speculaé skirt is the same

as lowering the knife edge from d2 to di.

~22~



2.4.2. Diffuse. Skirt, Reflectance = 0.0

With reflectance = 0.0, the diffused skirt may be treated as parallel

single knife edges. The pertinent geometry is shown in Fig. 8.

F1G. 8.

The actual length of the penumbra is defined by the region a'b! iIn F!g. 8.

The flux density distribution in the penumbra region a'o is ldentical to

that obtained considering a knife edge at d2. Similarly, the distribution

in the region ob' may be obtained for a single knife edge at d‘.

Let

position in penumbra for a single knife edge at'dz.



and

a'x!

" a'p!

= actual position In penumbra for paralle! knife edges at

d, and d,.

!

2

Consider the condition where

The actual position in the penumbra may be expressed as

If it is assumed R >> dz, then referring to Fig. 8,

From

so that

x
a'b!

a'x!
a'b!

<

a'o
a'b!

a'x'

a'B!

a'B'

. al:bl

a'o + oB'
a'o + ob!

similar triangles

>lo
oo

ob!

I

ao
Ao

ob
oB

2o}

O

S}

(2.4.1)

(é.h.z)

(2.4.3)

(Z;A.h)

(2.4.5)

-24-



Using the law of

>|>» -

—o- -
'o

and

ob'.

ob
also.

o8

ao

and for R >>d

ob

ao

sines
sin(e‘-ﬁ) .
sind, (2.4.6)
sin 6] 4.7)
2.4,
(2.4.8)
d] D/2 d‘ (2.4 )
ems——— F3 — , 2. 09
d2 D/2 d2

Substituting Eq. (2.4.6), (2.4.7), (2.4.8) and (2.4.9) into Eq. (2.4.5)

yields

sin(el-ﬁ)
Y+ —-—-(——-
a8, info,+6) (2.4.10)
a'b! sin'(e]-'-a) 1 *
'+ 5nle,®) 4,
which reduces to
2y = 2 = - ' (2.4.11)
a 1 + = tanB + (1 = L tamg) O
2 2 -d—'

2

_25




where

(2.4.113)

nlo

ctn 6‘ =

o i : . : PRI
~ Substituting Eq. (2.4.11) Into Eq. (2.4.1) and solving for §T§T yields

- | - |
’;:L _ > Z_J_‘ (2.5.12)

a'x'!  a'o
O,<_ajbs.<_a| '
where
. 1]
a'o 1+ 7 tanf 4
O R " . < (2.4.13)
l+—tanﬁ+(!--—tanﬁ)—-‘- '
2 2 d2
Equation (2.4.12) is interpreted as follows:
a'x!

"“The energy flux density at any point in the actual penumbra, oY is
' 1 .
equivalent to the energy flux density at a point §T§? in the penumbra

of a'single knife edge at d2."

~ Now consider a point in the actual penumbra where

-

26 |



The position in the penumbra may be expressed as

a'x' a'x' A'b!
alb! = A'b' a'b'

or referring to Fig. 8

Since for

Then from

and

At = Ab{ — j}
| {COSNI - (% tang)?)

‘Now

a'x! _J a'o A'o A'x: 'h!
a'b' . | A'b' _A'b' " A'b'J la'b’

R>>d,
alo _ A'o
ao Ao °

Eq. (2.4.6) and (2.4.7)

alo = ao-{ ! 0 }'
cosB (1 - E'tanﬁ)

1

) D
o = ;}% (1 + 5 tanB)

(2.4.14)

(2;4.!5)

(2.4.16)

(2.4.17)

(2.4.18)

(2.4.19)
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but from Eq.. (2.4.9)

ao ao 1 dz
so that
D
1 : } + tanﬁ .
E-.-l-g-l = 2 (20“"‘02])
b 2(d,/d.)
1772 ,
. V .
The term %EQ in Eq. (2.4.15) can be obtained by analogy from Eq.
d
(2.4.13) with 31- = 1.
2
A'o 1 D
A'b' 2 (1 + 2 tanB) (2.‘4.22)

Substituting Eq. (2.4.21) and (2.4,22) into Eq. (2.4.15) and solving

1,13
for - %73;-,- yields

: d
Al H t,! lbl ] D 2
Al,b(l = :l’;l {:|b|}+ 3 {‘ + 3 tanB} {‘ - ‘a']-} (2.‘4.23)
£ a'o a'x
or ot S e S W0

in Eq. (2.4.23)

a'b! a'B' a'b'
A'b" = A'b' a'Bf

aB abt _ 2a0ab o (2. 5. 28)

= BAba'B'"  20ba'B’

~28a




and from Eq. (2.4.9) and (2.4.11)

d

1+ %-tanﬁ + (1 - %-tanﬁ) El
a'b! 2
K-'-b—'— = (2.’*. 25)

{3

The position of the conical axis in the penumbra is given by Eq. (2.4.13).

The technique used for the solution of the diffused skirt with

reflectance = 0.0 is as follows

(1) For a given d‘/d2 determine the position of the conical axis,

1
§T§': in the penumbra from Eq. (2.4.13).
‘ . (2) For positions in the penumbra such that

a'x! a'o
_<_, albl — albl

0

1
with §T%| defined by Step (1). Calculate the equivalent

. 1t
position in the penumbra for a single knife edge, §7§7 ’

from Eq. (2.4.12).

| BN |
(3) The energy flux density at 2757 is then found by substituting
9 b4 a'b

1! -
the equivalent §T§T into Eq. (2.3.21) and continuing in a
manner identical to that for the solution of a single knife
edge, i.e., determine GT/D from Eq. (2.3.25) and the relative

flux density from Eq. (2.3.5), (2.3.6) and (2.3.4a). The energy

1,1
flux density corresponding to 27%7 is the required flux density

at a point in the actual penumbra, gf%f .
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(4). For positions in the penumbra such that

t t
a'o ax! < 1.0

al l_<_ al

o
[~

Ly N
‘with §T%, defined in step (I). Calculate the equivalent

| oy | !
position of a single knife edge, %TfTb from Eq. (2.4.23)

(S)._ The required flux density is determined from step (3)

. a'x' A'x'
replacing STBT by Ao °

2.4.3. Diffuse: Skirt, Reflectance = 1.0

. Assume the skirt is located along the conical axis. The associated

geometry is schematically represented in Fig. 9.

et '
a—

el —Q.
et
e

F1G. 9



e

First note that in the penumbra region ob' the effect of the skirt
can be ignored. Furthermore, the energy flux density distribution
in the penumbra can be obtained by superposition of the distribution
obtained in Section 2.4.2, diffuse skirt, reflectance = 0.0 and the

distribution due to the skirt.

The diffuse skirt acts as a secondary source of uniform intensity

since each point on the skirt ''sees'' the same fraction of actual source.

For notation sake, let the subscripts 1 and 2 refer to the primary and

secondary source respectively. The energy incident on a differential

area at a point x in the penumbra may be expressed in the.form of Eq.

(2.1.8) as
dqx = - JK;.(E‘X>+'EEX) (2.4.26)
“where
E&x = power vector from part of source seen by dAx'
Eéx' = power Yector from diffuse skirt

Equation (2.4.26) can be written as

dq, = da; + day, (2.114.27)
where now

dq, = =-dA - E, = energy flux due to source (2.4.27a)

qux =T EZ;’ Eéx = energy {lux due to skirt - {2.4.27b)



Let us concern ourselves with the energy flux due to the‘Sklrt.
The energy incident on dAx from the diffuse. skirt s some fraction of
the energy incident on the skirt from the source. The energy incident

on the skirt is given by

(2.4, 28)

da,. = - dA" Eyy
where
E:Z = power vector from part of source seen by the skirt

Since the skirt has a reflectance = 1.0, the total incident energy will be
\on
reflected in a manner not as yet specified. The skirtsees-% the total

source. Therefore

]Em' - 1 f . ;o R>>d, (2.4.29)
A, R

The equivalent point source seen by the skirt is lqcated at the centroid

4

of the visible area since the source is considered uniform. The angle

between .!:'-]2 and the normal vector, dAZ’ to the skirt .is then
¥ = 90 - tan"? (.21220). (2.4. 30)

as indicated in Fig. 1Q.
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The total energy incident on the skirt is then
(@) toral = AgEypc0s¥ - (2.4.31)
Substituting ¥ from Eq. (2.4.30) and E,p = I-E-IZ‘ from Eq. (2.4.29) .
into Eq. (2.4.31) yields
!
. .A2 1 ‘ IdA] ’
= == sij . D — 2.4.
(qZ)total > sin(tan .2122D) 2 ( 32)
' ' A, ‘
1
where
A, = area of skirt

2

=33




In Eq. (2.4.32), (qZ)tota! is the tota! energy reflected in all

directions in the hemisphere surrounding the skirt. Each differential

area of the skirt will distribute energy in the hemisphere surrounding

the differential area according to Lambert's law of diffuse radiation

~(Ref. 2 ).

Letdc = a vector defined as the maximum energy flux/unit skirt

area radiated from the skirt in a direction normal to
the skirt.
Since the skirt is a secondary source of uniform intensity, each differen-

tial area of the skirt radiates in a hemisphere a quantity of energy equal

to
(a,) —
d, . —2total o ﬂmrdA (2.4.33)
2 2 s
where
T is a unit radius vector
dAs is a differential area on the hemisphere of radiation,
= Rdrlf RsinY]: drz (see Fig. 11) (2.4.34)
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(a,) oA
2 total _ -2 .
dA2 Az = \/t/\dc.r R sunrldrldrz
co T
2 2r
= daRz\jhjpcosrlsinr!drgdrz
oo
2
= do TR 4 (2.4.35)
(q,)
do = —-2—£<2.’_tﬂ dA, (2.4.36)
. AzFR

Let

d . . : .

Y2x _ the energy received/unit area of the receiver at
dAx a point, x, on the receiver.

n, = unit vector normal to the skirt

n,& = unit vector normal to the receiver at x

Refefring to Fig. 12, it can be seen that
q
2x -
fa }{m}
x
{Fc nz-{} \r.n%} (2.4.37)
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The differentiai area on the skirt, dAz, may be transformed into

an equivalent differential area, dAs’ on a sphere of radius, R

-

dA_ = dAZ"ir (2.4.38)
- dAS .
nyr = GA {2.4.39)
2
Now
q dA -
d dAZ%}' = {?o EKE}' r.nx
x 2
dU' — —

Referring to Fig. 12, p.3ka
dA_ = R’sing,ds,dg, (2.4.41)

S

Substitutingdo from Eq. (2.4.36) and dAs from Eq. (2.4.41) into

Eq. (2.4.40) yields

q (q,) - :
d 2{}. = ——Z—£2§21 ren stinﬂ dd

= dg
dA_ A rh x 19929,
(q,)
- -—23%‘;53'— r-n sing do,dg (2.4.42)
2

-2Wa
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but from ng. 12

r.;; = cosﬁcosﬂl - sinssinﬂ'cosﬁz ‘ (2.4.43)
so that
dq (a,) “12 "22
2x  _ 2’ total . _ e . -
Y = 2 ——_K;F_—_J[ J[ sunﬂ](cosﬂcosﬂ, s:nBsqnﬂlcosﬂz) dﬂzdﬂl

ﬂ“ o

(2.4.44)

Symmetry about the xy-plane has been utilized to alter the limits of inte-

gration in the above expression by multiplying by 2 and integrating fram

0 to ﬂzz. Integration of Eq. (2.4.44) yields

]

dq2x = Z(qz)total cosB EZZ si zﬂ 2 - sinBsing El - Sln2¢'
dA. AT 2 " 22 {2 L
X 2 g .
11 '
(2.4.45)
Let Q' = relative energy flux density in the penumbra contributed .

by diffuse reflection from the skirt

The relative energy flux density outside the penumbra being received

by direct radiation from the source is

IdA.-

1

r —-R'z——
Al

cosB

g

g

12

11

-FT~
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b,

-

OISRy

Therefore, from Eq. (2.4.32) and Eq. (2.4.45)

Q’ dqledAx
- nIMAf
RZ
Fa -~ .. . g
2 sin2g 12
_ sm(tan ' 21220) 2 ' . 1 1
= t sin ﬂ J tanﬁsnnﬁzz 7 n
gl] ﬂll

b, < 7-8

12 (2.4.46)

The remaining task is to define the angles ﬂ]l, “12 and g22 in terms

" of the position in the penumbra, dl/dz’ and the width of the skirt. These

relations will be developed utilizing Fig. 13.

/ - W >
Lo - X |
Y 4 A A
/ ! .
A & // Skirt Ko} /
2 | ‘
- s L 9 | P22
! 11 ya ) A
4/ Ny f

N X'
. 1x! E’i
— ? %
-< e L ———— _>4'
(A) (8)
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d

- -1 2
ﬂ“ = tan [ dx}
|+d—

and
L
)
b, = tan td p J
X
d2 d2
Let
W = the half width of the skirt

Then from Fig. 13(B)

- -1 W
ﬂzz = tan {;}

Since
L = x'o cosp
and

dx = x'o sinp

dx = L tanf

Equations (2.4.47a) and (2.4.47b) can be written as

L
T d., 1
ﬂ]l = tan ' [ L‘ J
1 + - tang
2

(2.4.47a)

(Z;A.h7b)

(2.4.47¢)

(2.4.48)

(2.4.49)

(2.4.50)

(2.4.51a)

- 3Q~



-1 d2
EIZ = tan p (2.4.51b)
1 L .
Tt tane
2 2

The distance from the skirt, L, may be expressed in terms of position in

. alxl
the penumbra, 377 25

1 1,1
e e

‘Using Eqs. (2.4.7), (2.4.9) and (2.4.17) and noting that

a'b! = a'o + ob' :
—— d !
I+P-tanﬁ+_l_{l --Qtanﬁ}

aty = 22 2 2 2 (2.4.53)

1 - 2 tanﬁ}
but
a0 = d, 2 | (2.4.54)
3 = %972 ‘ o A

so that from Eq. (2.1+.52), (2.4.53) and (2.4.54)

d
D- 1 D
!+2tan@+d‘{l-itan{3}

L D 2 {a'o a'
Tt = '
d, = 2 ! - {_g_ tanﬂ}z a'b | a

xl
<}
(2.4.55)

a'x! a'o
0 S albl -— albl




g‘

With E—&.

O given in Eq. (2.4.13)

The angles ﬂ!l and “12 in Eg. (2.4.51) can be evaluated for any point
in the penumbra using Eq. (2.4.55). The azimuth angle, B,,5 may be

expressed as
) = tan | —— (2.4.56)

with %—- given by Eq. (2.4.55) and %— being a constant for any parti-
2 2 '

cular skirt.
The method of solution for the diffuse skirt is as follows:

(1) For a given D, d,/d, and incident angle,B, calculate L/d, as

a function of position in the penumbra from Eq. (2.4.55)

(2) uUsing L/d2 determined in Step (1), calculate #,, and @22 from

Eq. (2.4.51)

(3) For a given w/dz, calculate ﬁ22 from Eq. (2.4.56) using L/d2

from Step (1)

(&) Substitute 8,,, #,, and 8, from Steps (2) and (3) into Eq.

1’ 712 2
(2.4.46) and evaluate Q' using D and B from Step (1). Q' is
the relative energy flux density in the penumbra contributed

by diffuse reflection from the skirt.

AN



o . ' ’2.5.~ Method of Analysis -~ Double Knife Edge

The shaded surface considered is schematically represented in Fig. 1.

D/2 ———sm

"/M B
e
\ !
(+] C ‘

FIG. W4

The energy' flux density for the double knife edge is obtéinéd by super=
position of the distributions cdrresponding to single knife edges at A
and B in Fig. 4. The penumbra region a'c' is caused by a knife edge

at A. While the penumbra region b'e' is obtained by considering a knife

edge at B. For certain values of d/r the two penumbrae will oveilap.



giving a region of increased Intensity or a 'reinforced penumbra'’. The

characteristics of the penumbra as dictated by the d/r ratlo will be:

'ctn-,(-d-) > -122' Two distinct penumbra regions separated by a
distinct umbra region.

No umbra region. Penumbra due to knife edges at |

Let

= Position in penumbra for a single knife edge at i

The position in the penumbra for the double knife edge may be expressed
[}

a X

in terms of as
@ ta
a'x' a'x! A
a'e!' LA ale!
(2.5.1)
1 ] (]
0g &X-< 1.0
A
Referring to Fig. 1.
LA = a'c! ‘ | _— . ' (2.502)
! For R>> d
ao Bl + -g— tanB) + %E (1 - % tanB)]
alcl = o‘ (20503)

g BT

cosﬁ{i' - (12)- ijanﬁ)z}

A and B overlap resulting in a 'reinforced penumbra''.
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DT R T . it @ A,

and

1
a'e' = 2ao . (2.5.4)
| COSB’{I - (% tanﬁ)z} |

Substituting Eq. (2.5.2), (2.5.3) and (2.5.4) into Eq. (2.5.1) and
a'x' ' |
La

solving for yields

a'x! atx' | ' 2 | |
. oax! ' . 2.5.5
La ae l:(l + % tang) + (%3)(1 - % tanﬁ):l ~ | : )

but due to symmetry

b .
x . %% - X ‘ . (2.5.6)

If R >>d, then using similar triapgles

bc = (d - EF)D - - © (2.5.7)
and also
%E::. D | ‘ ' B (2.5-3)
so that
be = 2@ 2 - 1) | o C (2.5.9)

Referring to Fig. I,

ae = ac + be - bc - . 7 (2.5.10)



inee A

Since for R>> d

ac be dD

ae = Zr(-g-!z)-+ 1)

(2.5.11)
and
4D _ |
be _ r2°
e - 9D (2.5.12)
<+ 1
r 2
Substituting Eq. (2.5.12) into Eq. (2.5.5)
D d »
1 + 5 — :
a'x' a'x! 2 r
L, = ate’ |DTd (2.5.13)
A 2 {-;-+ tanﬁ}
a'‘x!’ a'c!
0< a'e’ = ale
where
a‘c! _ £ .
alel - raction of total penumbra due to knife edge at.A.
and from Eq. (2.5.2), (2.5.3), (2.5.4) and (2.5.11)
D :d }
ate! 2 -'-_-+ tan ’
alel = D d (205.]33)
1 + o=
2r
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[ R9Y | .
In Eq..(2.5.13) ‘:T:';T Is the actual position In the penumbra and

a'x'

La

is the equivalent position In the penumbra of a single edge at A.

Now consider the penumbra due to a knife edge at B. The portion of

the actual penumbra of interest is then

a'b’ a'x
ale! < —-l;l < 1.0

a'x! - 1- e'x! I'B
a'e! LB a'e!

(2.5.14) .
T8 :
0 < 5% < o
B
where in Eq. (2.5.14)
Ly = b'e’ | ) R (2.5.15) -
and
ot .
% = position In penumbra due to a single knife edge at B
B8 as measured from point e'. :
: . 1ot .
Solving Eq. (2.5.14) for eL: yields : o '
e‘x“ - {‘ _ax'| a'e'
Lg 5 a'e'|/ b'e'
' (2.5.16)
15t [ N | <
2 < 2 < o




By analogy to the solution for

| PV | [ ] []
0 < :,:, < g—,%,— i.e., Eq. (2.5.3)
oejbo ’I-‘--l!t:-m,_,)‘e-!,m--'t:mﬁ‘L
ble! = J

cosB{ 1 - (_ tang) } (2.5.17)

The expression for a'e' is given in Eq. (2.5.4) so that since oe = ao

and bo = oc

a'e!

1 + ‘
= ’ (2.5.18)
ble! D [d
i{? - tanp }

e'x’ {] a'x! } 1 + |
‘s ate’ %{-d; - tang } : (2.5.18a)

a'b! a'x!




with

'a'ﬁ' 1+ %-tanﬁ
a'e' d D (2.5.19)
1 +—==
r2
The position of the conical axis is given as
alo . _ 1[,,D |
ale! = 2 {l + 2 tanﬁ} . (2.5.20)

The technique used for determining the flux density distribution

in the penumbra of a double knife edge is as follows:

(1) calculate the fraction of total penumbra due to single knife

a'c!
edge at A, TieT from Eq. (2.5.13a).

[} ‘
< :.:, with :,:, determined from step (1),

a'x'
(2) For 0 < ST

calculate the equivalent position in the penumbra of a single

a'x!
knife edge, T from Eq. (2.5.13).
A

a'x!

(3) cCalculate the energy flux density corresponding to L
A

manner identical to that for a single knife edge, i.e., use

in a

Eq. (2.3.21), (2.3.25), (2.3.5), (2.3.6) and (2.3.4a). This
’ Ty 4 ;
flux density is the required density at f}ﬁir .

() Calculate the starting location of the penumbra due to a single

iRt
knife edge at B, 3727 from Eq. (2.5.19).

a'b! e'x! .., a'b!
(5) For aTeT S Tt S 1O with S5 from step (4), calculate
the equivalent position in the penumbra of a single knife edge
L 08 ] :
at B, eL" , from Eq. (2.5.18).

N



(6)

()

]
Calculate the energy flux density corresponding to: eLx from
al'x! e'x! B
Step (3) replacing = by =T and using =B in Eq.
. A B

(2.3.21).

The energy flux density distribution in the penumbra of a double

knife edge is obtained by summing the flux densities obtained in
[ RV |
steps (3) and (6) for a given location in the penumbra, 3737 .

IMPORTANT NOTE

A word of caution is in order in reference to the penumbra referred
to in step (5). The single knife edge system described in Section 2.3 is

not symmetric with respect to knife edge orientation and incident angle.

A comparison of the knife edge system of Section 2.3 and the system implied

by step (5) is shown in Fig. 15.

~d49~




" From Fig. 15(a) it is apparent that the flux density distribution
corresponding to Fig. 12(b) is identical to the distribution obtained

in Section 2.3 with the incident angle equal to -B. Therefore, in step

(6) use -B in Eq. (2.3.21).

2.6 METHOD OF ANALYSIS - RECTANGULAR CYLINDER

2.6.1 Diffuse Rectangular Cylinder, Reflectance = 0.0

The geometry considered is shown in Fig. 16

| b "““5>f
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Tbe solution for a rectangular cylinder is closely related to tﬁe solutions
for a knife edge with a skirt, Section 2.4, Thereforé, it is possible to

determine the relative energy flux density in the penumbra of a rectangular
cylinder by judicial superbositions of flux density distributions in penum-

brae of different single knife edges. The knife edges are considered to be

iocated at each of the four corners of the rectangular cylinder.

The analysis of the rectangular cylinder differs from the analysis of

the previous shading bodies in that a new parameter must be considered.

This parameter defines the geometry of the rectangle in that it is the ratio

of the height to width, %, and will be called the ''shape factor'. The
characteristic of the penumbra is dictated not only by the location of the

rectangular cylinder relative to the receiving surféce, but also by the

shape factor. From Fig. 16 for

-11d h D
ctn [? - ?] > 3 | (2.6.1a)

The penumbra consists of two distinct penumbrae separated by an umbra

E

region. For

ctn“[% - %] < -'2’- ‘ (2.6.1b)

the penumbraw due to the left and right sides of the rectangular cylinder

overlap resulting in a reinforced penumbra in the oveflappiﬁg region.

Temporar

ans

| KV -
.

y Considei oniy the ieft haif side of the rectangular cylin-

der. " A detailed view of this half is shown in Fig. 17.
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s

in the penumbra region a'P" the penumbra may be considered due to
a knife edge at A. In the region from P".to ¢' the apparent knife edge
may be considered located at C. Referring to Fig. 17, the position in

the actual penumbra is expressed as

L
| R | lxl A
:l:l aL alel (2'6'2)
A
where
A f—
Ly = a'A! . (2.6.3)

and is the length of the penumbra due to an apparent knife edge at A. '

Therefore,

Lip (2.6.4)

If R>>d, then from Fig. 16 and Fig. 17, trajectories e'E and A'A
may be considered parallel. Let an orthogonal coordinate sySfem with its
origin on the axis of the rectangular cylinder be orientated as shown in

Fig. 16. The equation for a general ray is given as
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Furthermore, note that the slopes of the ray trajectories are given

ma'A = D/2

= -1
Me1E D/2
"AA T Merp T

-

D/2

(2.6.6a)

(2.6.6b)

(2.6.6c)

Also, the coordinates of points A, C and E located on ray trajectories

a'A, c'C and e'E, respectively, are given as

Point A: Ya
Point C: Ye
Point E: Yg

r, r4

A
r; z.
-r; z

-h (2;6.7a)
h (2.6.7b)
-h ' (2.6.7c)‘

From Eqs. (2.6.6), (2.6.7) and (2.6.5), the required ray trajectory

equations are given as

(z),ia 7z Y
- !
(Z)'A'.A 7z Y

@ = -z Y- r{%’“%}

- (2.6.8a)
(2.6.8b)

(2.6.8¢c)
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The equation for the receiving surface is given as
z = d+y tanB - (2.6.9)

Combining Eq. (2.6.9) with Eq. (2.6.8) yields the y intercept of

the ray trajectories on the receiving surface.

D{d h z}
re<—+—+=
, = —2lc_r 0D ' (2.6.10a)

D
1 - > tang

;’K' = ) (2.6.10b)

Yer = (2.6.10c)
Also from Fig. 17
Ypr T T . (2.6.11)

From Egs. (2.6.i0a) and (2.6.10c) and Fig. 16

2

D

+h, .
{ } v o (2.6.12)

cosB

— "I'D.

-S4




and from Eqs. (2.6.10a) and (2.6.10b)

rD r e
cosB | . { d tana}z (2.6.13)
|2

%+-!.‘-+ tang
1.

Also from Eqs. (2.6.10a) and (2.6.11)

- |

r % % + =+ tanB ' '
alP [ ] = (2060 ]l‘)
! cosp. 1 - > tanB

2

Substituting Eqs. (2.6.12), 2.6.13) and (2.6.14) into Eq. (2.6.4) yields
the expression for the equivalent position in the penumbra of a single
knife edge at A that will have the same energy flux density as the actual

position in the penumbra due to half a rectangular cylinder.

i D fd  h
a'x' _ a'x' ]+2{r+r}

L T a'e' Dfd_h
A E-{f;i-;) + tané}

. ey (2.6.15)
0 -— alel -— alel
with
D D d  h '
atp ! - {l-i-—tanﬁ {—+-—-+ tanﬁ}
—— = S — (2.6. 15a)
] .
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For a point in the actual penumbra such that . |

aIP !

1 a'x!' a‘c!
a'e! > alell = ale! (2-6.‘6)
The position in the actual penumbra may be expressed as
L
a'x!* _ a'x' ¢
a'e’ = L. a'e (2.6.17)
(
or
1p Tip 1 -
ax. o {GP‘ S, —-—c""}-—-——LC (2.6.18)
151 1.1 e Ve
a'e Lc LC Lc a'e
where
Le = T« (2.6.19)

and is the length of the penumbra due to an apparent knife edge at C.

Eﬁ'
Solving Eq. (2.6.18) for == yields

Le
p ot Tip 1
C'x! - a'x'! - a'e'}_ - 2 Pl + ¢ Pl
LC a'e! C'e! Cict Cie!
(2(6.20)
] ]
a PI a'x' a'c!
a'e| - alel -_— alel
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Lx> 1

From Fig. 17 for R >> d the ray trajectories a'A and C'C may be considered

e .
il !

parallel. From Eqs. (2.6.6a), (2.6.7b), (2.6.5) and (2.6.9) the y inter-

" cept of ray C'C with the receiving surface is given as

Y. p; vy Y
T i =2 tang (2.6.21)
Referring to Fig. 17
EI ' rD %‘%"'tanﬁ : ( 6 )
C = = - | ' 2. 022
. cosB | - { tanﬁ}z
l ' and
|
; ‘ p [d
t _ r 2 T - —r-+ tanf
ClP| [ = cosﬁ D (2060 23)
: ]l - 7 tang.
Substituting Eqs. (2.6.12), (2.6.14), (2.6.22) and (2.6.23) into
Eq. (2.6.20) yields
h D
B | 1F { } "{+2tanﬁ (2.6.24)
l'C a'e! -—-—+tanﬂ Q__h+ tanp o
2r r r
a.Pl. a'x!' a'c!

alel _<_ alel -_— alel




with ‘ ‘

pee{: 258 el

alcl
= (2.6.24a)
a'e! 1+ _{_ _} |
and
alP ) .
o given by Eq. (2.6.15a)

Equations (2.6.15) and (2.6.24) define equivalent positions for apparent

single knife edges associated with the left half of the rectangular cy-

linder.

Now consider the energy distribution in the penumbraAdue to the

. right half of the rectangular cylinder. The geometry is shown in Fig. 18.

S —

1’ ';'
i —
| /
z /
d _ Y ,
B o;E b

,‘ FiG. 18



For

Ibl | 38 | a.PZ. '
a'x

:lel < ale! = g (2.6.25)
the position in the actual penumbra may be expressed as

a'x! e'x!’ LB é

aQeI = ] - LB alel (206-2 )
where

A _ '
LB = b'8!' (2.6.27)

and is the length of the penumbra due to an apparent knffe edge at B.

Referring to Fig. 18 since

elxl = elpzl - 'B—IPZI + E'x. (206-28)

Eq. (2.6.26) may be expressed as

1p R'p - .
a'x' _ 1 P2 8 Pz + B'xi}
== - -
a'e | ! Lg Lg | LB B

L
—ror (2.6.29)
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Solving Eq. (2.6.29) for T
8

_ p 1 Rip !
Bix! - { ) alxl}alel ) e P2 . B P2
, a'e' 5|§'| b'B* b'B"
' (2‘6.30)
a'b' a'x' alPZ'
a‘e! = a‘e! = a'e'

Referring to Fig. 16 for R >> d, the ray trajectory, b'B, can be considered
to be parallel to the ray trajectory, a'A, and ray.E'B can be considered

parallel to ray e'E. Therefore from Eq. (2.6.6a) and (2.6.6b)

Mg = MaA = 973 (2.6.31a)
mgig = Mo = - 3}5 | - (2.6.31b)

The coordinates of point B on ray trajectory b'B are
Point B: yg = =~ r; z. = h (2.6.32)

From Eq. (2.6.31), (2.6.32) and (2.6.5), the equations for ray b'B and

B'B are given as

W = oy ¢ 20D 2.6.350
. (s 2 ‘
g = ~5Y * oD . (2:6.330)
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Combining Eq. (2.6.33) and (2.6.9) yields the y intercept of rays b'B and

B'B with the receiver.

DJd h. 2
_ rf{r-r+3}

Ypr = D

I--z-tanﬂ

D |d h 2
y=, = -rZ r-r+0}
, =
B l+%tanﬁ

- From Eq. (2.6.34) and (2.6.35)

S

d_h
pIg = ID {r'r°ta"_ﬁ}

cosp 1 - {% ta nﬁ}z

From Eq. (2.6.10c) and Fig. 18

: {
r —
elp ! = 2

2 cosp

+

= |a

- tanﬁ}

tanf

+

-——t
Njo|= i

Also from Eq. (2.6.34) and Fig. 18

a D d h
§|P|=r2 {r-r-tanﬁ}

T

(2.6.34)

(2.6.35)

(2.6.36)

(2.6.37)

(2.6.38)
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h 2
alb'! = rD r + D
cosp 1 - -~ tanB
D [d h 4
APt o r3 7t tp - tae)
2 cosp | - _lzl tanp’

(2.6.39)

(2.6.40)

Substituting Eq. (2.6.12) and Eqs. (2.6.36) through (2.6.40) into Eq.

(2.6.30) yields the expression for the equivalent position in the penum-

bra due to a knife edge at B that has the same energy flux density as

the point in the actual

penumbra.

DJd  h
a'x! I+ -Z-{r + r} -
“a'e'JID Jd h
2 {r T r T tanﬁ}
] ]
a'x! < a PZ
alel -— algl

Elxl {

3 = 4] -

B .
a'b'
ale! <

with
a'b?
ate'

and

(2.6.41)

(2.6.42a)

a'e

d
-

1 D . Dfd., h D
o a'p -{l +-tan(3}];2+-—{—+—} -étanﬁ]
2 _ 2] "2 - 2 o 2__J (2.6.42b)
1+ = + -
2{ r

-62~



Finally for regions in the penumbra such that

a’lP 1

2 axl gy _ (2.6.43)

alel - alel -

the position in the actual penumbra may be expressed in terms of the posi-

tion of an apparent knife edge at E.

] [ 1 ] [ ]
ater = - eL: T (2.6.44)
where
Lp = Ee’ | (2.6.45)

and is the length of the penumbra due to a knife edge at'E.

From Eq. (2.6.4k4)

(2.6.46)

2 a'x!
alel S. alel —-— ‘

tf R >> d, then from Fig. 18 and Fig. 16 E'E and ray trajectory, a'A may be

m, - m = - (2.6.47)
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Combining Eqs. (2.6.47), (2.6.7c) and (2.6.5) yields

@ = gy - {% ; %} | '(2.6.48)

The vy intercept of ray E'E and the receiving surface is then (from Eg.

'(2.6.48) and (2.6.9))

D Jd h 2
-rZ{r+r_D}

y=, = (2.6.49)
E! ] - g— tanB
From Eq. (2.6.49) and Eq. (2.6.10c)
d  h
- _ _ _rD {7 - tan{B}
E'le' = LE = osp : ) 2 (2.6.50)
- 12 tanp
Substituting Eqs. (2.6.50) and (2.6.12) into Eq. (2.6.46) yields
e'x' {l a'x'} 1+ % {% + %}
- ot
l'E a‘e -g--g-+‘%-tanﬁ}
e (2.6.51)
2 a'x'
ate' S Fier S l

alP [ ]
with ——+ being given in Eq. (2.6.42b)
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The position of the conical axis in the penumbra is given by

i Y.
:':' = a':' ' (2.6.52)

alo_ %{1 + % tanﬁ} (2.6.53)

The technique used for determining the flux denSity distribution in

the penumbra of a fectangular dylinder is as follows:

(1) Calculate the fraction of total penumbra due to an apparent
aIP 1 .
knife edge at A, ;,?!- , from Eq. (2.6.15a)

alP 1 aiP ]
with e determined in step (1),

(2) For 0 < To7 < v

calculate the equivalent position in the penumbra of a single

knife edge, 2 x from Eq. (2.6.15).

Tyl
p 4
La

[ RN |
(3) Calculate the energy flux density corresponding to aL in a
. A A
manner identical to that for a single knife edge, i.e., deter-

) . ,
mine EI from Egs. (2.3.21) .and (2.3.25) and the relative flux

density from Eqs. (2.3.5), (2.3.6) and (2.3.4a). This flux
lxl

density is the required density at e’

Lt
£
-

Caicuiate the position of the end of a penumbra due to an apparent

]
knife edge at C, -:‘.—Z.—, from Eq. (2.6.24a).
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(5)

(6)

(7)

(8)

(9)

(10)

(1)

(12)

T
a Pl a'xt a‘c!

<
a'e! = a'e' = a'e!

For with the limits defined in steps (1)

and (4), calculate the equivalent position in the penumbra of a
Tt

' .
single knife edge at C, =X , from Eq. (2.6.2h).

LC
. C'x!
Calculate the energy flux density corresponding to LC from
£ 1 R
step (3) replacing alx by =X-.
I-A Lc
a'b’ a'P,’
Calculate —v and';ﬁ;r- from Eqs. (2.6.42a) and (2.6.42b)
IP [}
a'b! a'x! a ) . . . .
For 3iel S atel S Fiad with the limits defined in step

(7), calculate the equivalent position in a penumbra due to a

[ IV |
knife edge at B, 2, from Eq. (2.6.41).
‘ B
Ryt
Calculate the energy flux density corresponding to Lx
' B
. a'x! B'x'
from step (3) replacing T by T and using -B (see note
A B

Section 2.5, p.49 ) in Eqs. (2.3.25), (2.3.5), (2.3.6) and (2.3.k4a)

AP aw a'hy’
For == <& Sigr < 1 with —=7— given in step (7), cal-

culate the equivalent position in the penumbra due to a knife

elxl
edge at E, =—— from Eq. (2.6.51).

LE
[ VS |
Calculate the energy flux density corresponding to eLx from
a'x' e'x’ ‘ : E
step (3), replacing 1 by <% and use -p (see note p.49 )
A E '

in Eq;. (2.3.25), (2.3.5), (2.3.6) and (2.3.ka).

The energy flux density distribution in the penumbra of a non-
reflecting rectangular cylinder is obtained by summing the flux
densities determined in steps (3), (6), (9) and (11) for a

. . . ' !
given location in the penumbra, e’ °
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2.6.2 Specular Rectanqular Cylinder, Reflectance = 1.0

If the source and the rectangular cylinder have relative positions

such that (see Fig. 16)
R> d+h

the sides of the rectangular cylinder will have the characteristics of

specular skirts. Therefore, from Section 2.4.1, the effect of the
specular sides is such that the rectangular cylinder may be replaced by

- a double knife edge located at

d_d_n
i ‘I', r r r
where
d is a geometry factor associated with a double knife edge
r
and g- and-% are the geometry factors associated with the rectangular
. cylinder.
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2.6.3 Diffuse Rectanqular Cylinder, Reflectance = 1.0

For

R>>d+h

each side of the rectangular cylinder may be considered a diffuse skirt and
the analysis of Section 2.4.3 is appropriate. Therefore, the relative flux
density due to diffuse reflection from the skirt, Q', may be calculated
using Eq. (2.6.46). However, the angles, Byy E‘é and ¢22 must be redefined
in terms of geometric parameters associated with the rectangular cylinder.

The geometry considered is shown in Fig. 19.

/

e y——

dx‘ / 7*
%
a
L
l
FiG. 19
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From Fig. 19 for the left half of the rectangle

L = x'P 'cosp , (2.6.54)
dx = tanB(L + r) | ~ (2.6.55)
-and
5. = tan"{ L } | (2.6.56a)
11 d, + d . T
2 x
-1 L -
g]Z = tan {d| +dx} . (2.6.56b)

Substituting Eq. (2.6.55) into Eq. (2.6.56) yields

| @ | T
| f), = tan I . (2.6.57a)
: _7+ {-;-t- l} tanB_
- L -
B, = tan”! r— s (2.6.57b)
_—r-+ {‘F+ l} tanﬂu
Since x’PI’ = a'P.l' - a'x!
1 |
L ={:.:! - ::::} a'e'cosB : (2.6.58)

Substituting a‘e'cosp from Eq. (2.6.12) into Eq. (2.6.58) and solving

for L/r

t9



A
1 + -{'—-+ }- 'P !
L { a'x'} (
Lr _ — 2.6.59)
r _ {f tané} a'e >
IP ]
a'x' 2N
- P a'e! /
alP'| .
with 7o given in Eq. (2.6.15a)
Referring .to Fig. 19
d
2 _4d . b | ~ (2.6.60a)
r r r .
|
[4 ) d
L .4 _ h . (2.6.60b)
‘l' r r r
so that
F— L ™)
ﬂ], = tan”! T [ (2.6.61a)
{-—+ -} {— + !} tanp '
r o r r .
S —
L 1
By, = tan-l { s ‘ . (2.6.61b)
. {—-? { + l}'tanﬁ )
d h L
where T and T 2are geometry factors for the rectangular cylinder and T

is given in Eq. (2.6.59). The azimuth angle may be derived as



SN I O R O e 08550, 'l'! ‘

Lo it ] A i inn e e i

d
] = tan-]{%} = tam-l 2

22

or
w
_ -1 r

ﬂ22 = tan {L}
r

where

W = half width of the skirt

and % is given by Eq. (2.6.59)

For the right half of the cylinder, i.e.

alP L]

2 | P |
a'e' S :':' < 1
— L ———
7] = tan-' L
n d  h L
r'*l'.{l""‘}tanB
n— L ——
-1 r
') = tan -
12 d h L
r-r'{?+'}ta"6__]

. - : S I A
ﬂ22 = tan = tan «[

(2.6.62a)

(2.6.62b)

(2.6.63a)

(2.6.63b)

(2.6.63c)

~/1-



79

with

egfeey {“} ey )

L
ro V- {—-ta 5}, a‘e'
 sen)
a'P ! )
2 a'x!
a'e' = Fier S r. /

a.P ]
where ;T;%- is given in Eq. (2.6.42b)

‘ alP ]
in evaluating Q' for the region ate’ S Fiad

< 1, note that -8

must be used in Eq. (2.4.46).

2.7 METHOD OF ANALYSIS - CIRCULAR €YLINDER

2.7.1 Diffuse Circular Cylinder, Reflectance = 0.0

The gehera1 geometry of the system being considered is shown in Fig. éO.
(See following page.) In Fig. 20 the points on the cylinder identified as
A, C, B and E define the points of tangency of the extreme fays with the
cylinder. The total length of the penumbra is given by the intersection
of rays a'A and e'E with the receiving surface. A general éoiﬁt in the
penumbra has an obstructed view of the source. |If diffraction effects are
ignored, a general point in the penumbra ''sees'' that part of the source

that is defined by a 1imiting ray that passes through the point and is



.

FIG 2¢

73

F1G. 20

tangent to the cylinder. Therefore, each point'in the penumbra has an

obstructed view of the sodrce‘due to an apparent knife edge located at

the point of tangency of the limiting ray with the c?linder. The energy

‘flux density distribution in the penumbra of a circular cylinder may be

obtained by determining the location of the apparent knife edge for each

point in the penumbra and calculating the corresponding relative energy;

fiux density at that point due to that particular apparent knife edge.



4
{ -

A

v

if R<< d then the rays a'A and b'B may be considered parallel.
Similarly, the rays e'E and c'C amy be considered parallel and the geometry

used in the analysis of the circular cylinder is as shown in Fig. 21. p.7ha.

Consider the part of the cylinder generating the penumbra region
a'c'. For any point in the penumbra from a' to c', é ra* trajectory to
the point and tangent to the cylinder will have a point of tangency between
A and C on‘the cylinder. Referring to Fig. 21, p.7ka, locate an orthogonal
coordinate system (Y-Z) on the cylinder such that the origin of the coordi-

nate system is coincident with the axis of the cylinder. Define

A
ex = angle measured from the positive Y axis (positive counter-
c¢lockwise to any radius line perpendicular to a ray x'X
that is tangent to the cylinder.

From Fig. 21, the characteristic of the penumbra will be such that for

X c
1 “d D
. d~rsind = - =
-1 : et -1 r 2 D
ctn T oS8 * ctn 2 | > 3 (2.7a)
. c D
-3

there will be two penumbrae separated by an umbra region, and for

) |
et | 2 | < 2 | (2.7b)
- '
8

the penumbrae due to the left and right portion of the cylinder will over-

lap resulting in a reinforced penumbra in the overlapping region.



FIG. 21

‘7’-£a-
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The general equation for any ray given as

Z = mY+b (2.7.1)

If the ray is tangent to the cylinder, the slope of the ray will be

‘ .
m= - tan6, (2.7.2)

‘Furthermore, the coordinate of the tangent points will be

Yx = r cosBy (2.7.3a)

Zx = r sinex (2.7.3b)

From Eqs. (2.7.2), {2.7.3)-and (2.7.1) the general equation for a ray

tangent to the cylinder is given as

1 ' r
- Y 4 — (2.7.4)
tanGx §|n9x .

The equation of the receiving surface is given as-

Z = d+ Y tap (2.7.5)

Substituting Eq. (2.7.5) into Eq. (2.7.4) and solving for Y gives the ¥

intercept on the receiver of a general ray tangent to the cylinder
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x! cosex + sinb tanB
3

?. | Y, = P{‘-‘sme} | (2.7.6)

Now consider a general point, X, in the penumbra region a'c'. The

jd
[

point x “'sees" an apparent knife edge at X, the.tangent point of ray x'X
and the cylinder. In fact, the inc{dent energy on x' Is the same as that
received in the penumbra of a single knife edge a distance dx above the

surface (measured at the conical axis) at a location .%qégr in the penumbra

due to the knife edge. The position in the penumbra of a knife edge at

dx may be expressed as

Rt

% (2.7.7)
i_ @ 0 < XX < F5
For rays a'A
o = Oy = -% (2.7.8)
Since
atxt = o (Y, - V) (2.7.9)

Use of Eqs. (2.7.8) and (2.7.6) yields
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cosex - cos% + (sing + sin@x)tarﬁ + % s!n(-+ e )
cosp {cos*g- - sm— tanﬁ} {cose + sind tanﬁ}

alxl

(2.7.10)

For ray e'E

so that from Eq. (2.7.11) and (2.7.10), the total length of the penumbra

~due to the cylinder is

a'e' = 2 ¢ {' +-Slﬂ-} (2.7.12)
cosﬁ {cos—J’ {s; tanﬁ}' !

For ray ¢'C

6y = 6, = % | - (2.7.13)

and from Eq. (2.7.10)

2 smg tang + g- sinD

alet = COS@ {c s—} {sm— tanﬁ} | '. . (2.7.14)

The fraction of the total penumbra due to the section of cylinder AC is

obtalned‘ from £qs. (2.7.12) and (2.7.14) as
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Referring to Fig. 21, p.7ha, consider another orthogonal coordinate
system (y,z) parallel to the Y,Z coordinate system and origined at X.
The equation for a general ray trajecto}y associated with the apparent

knife edge at X will be
= y;xtand, _ (2.7.15)
The equation for the receiving surface in the y,z coordinate system is

z = dx + (r cosby + y)tanB ; " {2.7.17)

The y intercept of a general ray and the receiving surface is obtained

by combining Eq. (2.7.16) and (2.7.17) as

dx +r cosextanﬁ ;
y. = (2.7.18)

tanei -~ tanf

For the ray x'X reference to Fig. 21 indicates
6, = 6 = 90+6, | o (2.7.19)

so that Eq. (2.7.18) may be written as

- {d, + r cosb,tanB) tand
X X ,
1+ tanextanﬁ




Also for the hypothetical ray, -a-'X, parallel to ray a'A

and

D
(dx +r cosextanﬁ) tamy

l - tan% tanf

From Eqs. (2.7.20) and (2.7.22) and the fact that
' d .
dX = r{ p + smex}

d . D - D
;.x| _ r {r - smex + cosexj;anﬁ} {tan—z- + ta:\Gx}
cosp {l - tan-g- tane} {l'+ tanextanﬁ}’

For the hypothetical ray c'X parallel to c'C

D
el = 9?:" = 9‘)"”2.

From Eqs. (2.7.25), (2.7.18) and (2.7.22)

D |d .
2r tani {r - smex + COfGXtanB}
cosp 1 - tan2 tang 2
L “ J

alec! =

(2.7.21)

(2.7.22)

(2.7.23)

(2.7.24)

(2.7.25)

(2.7.26)



Substituting Eqs. (2.7.24), (2.7.10), (2.7.12) and (2.7.26) into Eq.
(2.7.17) gives an expression for the equivalent position in a penumbra
due to an apparent knife edge at X for a point in the actual penumbra

due to the cylinder

{ 4. .0l f b 1 ]
20 _ a'x? cosex ﬁl + . ur:z-}itarri+ tanex} .
== ate’ D — D D —d_. D
a'c tani{Fosax cosy + (s'"f + sinex)tana + = sm(2 + ex)
a'x' a'c! (2.7.27)
0 < 77 £ et
f P
with 2755 given by Eq. (2.7.15)
it should be noted that by the definition of Gx, Bx is a function of
K .
' a'e'
| For

0 alxl alcl
- alel -_— alel

A S 8 < 6 ' ' . (2.7.28)

nlo
N.|O

< 6 < (® < 159 (2.7.28a)

Small angle approximations may be used in evaluating Eq. (2.7.27). Let

smex = @

v
(o)
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!ll
Nlo
]
(XY=

cosg‘ = ] -
2 g

Substituting Eq. (2.7.29) into (2.7.27) expan

all 3rd order terms (i.e., terms proportional to D

yields an expression for the equivalent position i

single knife as

' ]...g...D.

- r2_
_.._. alel 2 g-
alc 2 {r + tanB

A comparison of Eq. (2.7.30) with Eq. (2.5.13

(2.7.29b)
(2.7.29c)
(2.7.29d)

ding and eliminating

2 .2
3, Doy, D76y, ex3)

n the penumbra of a

(2.7.30)

) in the Double Knife

Edge Section indicates that the expression for equivalent positions in

penumbrae due to the left half of the cylinder (Egq. (2.7.30)) is identical

to the expression for the equivalent position in the penumbra of a single

knife edge which corresponds to the left edge of the double knife edge

- Eq. (2.5.13)). Therefore, for the calculation of relative energy flux

density, it is concluded that for small solar fiel

d angle (D < 15°) the

curvature of the cylinder may be ignored and the cylinder reduces to a

double knife edge located at the diameter of the cylinder.
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2.7.2 Specular Cylinder, Reflectance = 1.0

The case of the nonreflecting cylinder has been covered in a previous
section and was shown to be equivalent to a double knife edge in so far
as the accuracies being considered here are concerned. The éddition of
a specular surface to the cylinder has the effect of increasing the energy

flux density both inside and outside the penumbra.

A point on the receiver in the penumbra will see an image of that
portion of the source which is directly visible in the cylinder. The
problem of finding the flux density augmentation due to the specular
cylinder reduces to that of finding the ratio of the angle subtended by

the specular image to that of the angle subtended by the directly visible

‘image. This ratio is #/6;, as defined in Fig. 22, p. B2a. The defining

relationship for ﬁ/eT has been derived using some small angle approxima-
tions having for their basis the previously used approximation that the

sine or tangent of half the solar field angle, g-, is equal to the angle

itself. GT will never be greater than the solar field angle, and # and ¥
will always be less than GT. ' .
Referring to Fig. 22
&, = rsiny = rvy - (2.7.31)
2 2

5, = r(l. - cosy) = r{l_— O -{-)}= o (2.7.32)

2

. 8r 5r l%%.
R R (2.7.33)
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Equation (2.7.33) relates #, ¥ and V. The next requirement is to find a

relationship between these quantities and BT. Define Ti to be the angle

between an incident ray and the tangent to the cylinder at the point of

impingement on the cylinder and ‘{p to be the angle between the tangent
and the reflected ray. 1t follows that
{
Tp = = 8-¥ (2.7.35)
, ) Yi = - Tp = P+ ¥ ’ ' (2.7-36)
l . : Substituting Eq. (2.7.36) into Eq. (2.7.34)
o = ¥+ ‘ (2.7.37)

Substituting for # from Eq. (2.7.33)

2

o = 2*+ﬂlv-!-_—;ﬂ' s - (2.7.38)

This expression.may be rewritten as

2v8 |
*2_% 91*%!}*+-371 - 0 (2.7-39)
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Solving for ¥

& } %{GT * i—v} z ‘/{%} 22{9 * %!}2 - W i;_il‘ (2.7.40)

The algebraic s'ign of the radical is chosen by notihg tHa't as either r or
V become very large, +v—> 0, and, therefore, the minus bsign is appropriate

Now, solve Eq. (2.7.37) for ﬂ/GT and substitute for 2y from Eq.

(2.7‘.140) which gives the final expression

Z . 1
R R PNV (R SUc Ul QR N
T T - T T
As -%—’0, % —>1], in which case, the cylinder appears as a plane
T
mirror. As YV 5o s g —3> 0.
. r 6
T .
The relationship between ;%— and the position in the penumbra will
T ,

now be derived. From the definition of Oy given on p.74 and Fig. 22.

d-rsnne -l-ytanﬂ»

V = . (2.7.42)
coS {. - 9.}
since
D f D o
-3 < 8 £ 3 (® < 15)
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Small angle approximation may be used so that

d
y . 1 -=86
Ix - ____L_’L (2.7.43)
r 1 + extanB
Also
= I ‘
92 7 * Oy (2.7.44)
and
- Db, lr = 2 _
2 2 * {z - 92} 7~ 8% (2.7.45)

Substituting Eqs. (2.7.43), (2.7.44) and (2.7.45) into Eq. (2.7.42)

expanding and eliminating 3rd order term in g-and ex yields

1 -2
d r X
v % {1 + gytanp) 2P -
- . (2.7.46)
T 2.0 |
2 = %%

D J
=<

6y is obtained by combining Eqs. (2.7.10) and (2.7.12) to form 2%; and

solving for Gx. Following this procedure and using small angle approximation

gives

a'x' a'c!
RN P !
o, = 2{ " aer (¢ tanﬁ)} (2.7.47)
: a. - (1 + tanB) - (Dtane)

a'c'
1 ..<_ alel . ’
/
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. .
with ate’ given by Eq. (2.5.13) and, for convenience, repeated below

D Jd
a'c! i{?+ tanﬂ}

D d
1 + 2 7

The iﬁtgrpretat}cn of the resuit is that the portion of the source
seen by reflection in the cylinder is being viewed at a low angle, i.e.,
that portion of the source appears rotated relative to the receiver about
an axis parallel to that of the cylinder. The cylinder thus renders the

image highly astigmatic.

Figure 23, p.86ais a graphical ray trace for a large source close to
‘the cylinder. The ray trace indicates that the image is curved and close to
. the cy|4inder. If the source in Fig. 23 is reduced to a size consistent with
those under consideration and is placed at a great distance from the cylin-
der, the curvature is reduced. It seems reasonable to ignore the small
amount of image curvature in any calculations. Figure 24, p.B6b depicts
the appearance of the image. Since circular sources are being considered

here, the image will appear to be a portion of an ellipse.

The energy received by reflection may be found either by considering
that the area of the source has been reduced, or that the source is being
viewed by the receiver at a low angle so that the energy received is re-
duced by the cosine of the angle between the. receiver and the normai to
the source. The area of an ellipse is mab, where a and b are the major

2

H - PP - -
ively., The area of a civcle is ga .

and minor axes of the ellipse

I The ratio of the area is

_86-
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Ae b
-A— = —-—2— = ; (2‘7'1’8)
c

b Ae
cose = = = = (2.7.49)
c
Also
6 ;
T _ 2
> = 1 (2.7.50)
b g b
| 7 =1 (2.7.51)
L A
g_. = -f;- = cose = 3= (2.7.52)
T c

Therefore, the augmentation in energy flux density due to reflection
is found by multiplying the energy flux density arriv'ihg at the receiver

directly by the factor %
T
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2.7.3 Diffuse Cylinder, Reflectance = 1.0

The diffuse cylinder is more analytically formidable than the .
diffuse skirt. The reason for this is that the cylinder is not uniformly
illuminated by the source, whereas the flat skirt is‘uniformly illuminated.
In order to determine the augmentation of relative energy flux density in
the penumbra due to the diffuese circular cylinder, the integrél of Eq.
(2.4.44) must be evaluated with the inclusion of a function of # which

mathematically describes the varying illumination of the cylinder. The

- inclusion of this function makes the analytical evaluation of the integral

tedious, and consequently, a numerical integration technique was used.
This consisted of treating the cylinder as being uniformly illuminated on

finite lengthwise strips.

Obtaining a solution to this problem consists of defining the illumi-
nation of the cylinder and then finding a numerical solution utilizing this

information.

Referring to Fig. 25, Eq. (2.1.7) can be evaluated and rearranged as

dq I,dA | ‘
R2 = cosy f - |  (2.7.53)
2 A r '

Where the subscript, 2, refers to the cylinder.
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Note that the only portion of the cylinder which is of interest is that

defined by the limiting rays from the source, and that this portion has an

included angle equal to the solar field angle, D.

Since,

cos {zI - (BT - ec)}

cos T =
= sin (BT-GC)
D
0 < (GT-GC) =720

Eq. (2.7.54) will be approximated as

Therefore,

Let

-6)

cos v = (OT c

(2.7.54)

(2.7.55)

(2.7.56)

(2.7.57)
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(2.7.58)

Utilizing Eq. (2.4.4h4), the relative energy f}ux density on the receiver

may be written as

| P22 %12 o - ~
Q' = # f f D{%T- - 35}{—::} sinﬂl(cosﬂl - tarﬁ'sinﬂ‘cosﬂz)dﬂldﬂz'
° 8y

6
-D—‘_:- is computed from Eq. (2.3.5) and (2.3.6).

(2.3.4a) and (2.3.4b) as

] 1 .
- = v{a-zsmw}

>|>

A¢

(2.7.59)

is obtained from Eqg.

(2.7.60)

Numerical evaluation by means of uniformly illuminated finite ele-

ments permits Eq. (2.7.59) to be evaluated as

R AT A DL I |
i b "D JilA S, |2 sin %,
: i

12§

1

- t:anﬁsinﬂ22
i

- —

.?_‘.. sin2¢'
2

(2.7.61)

]

)

12

i
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3.0 METHOD OF ANALYSIS - MODULE SOLAR SIMULATION MODELS

The type of module solar model being considered in this study is

shown in Fig. 26

b D

FIG. 26

Each module can be considered a separate source havfng 1/7 the intensity

of the total source. The Incident energy at any point in the receiver may

be‘expressed as (see Eq. (2.1.8) and (2.1.9))

“w--FE--T) [& : (3.1

—d
i S,
1

_ where E , dE must include only the areas of direct (and, if applicable,

reflected) illumination.
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The actual solutions pertaining to module solar models are implemented
by yse of solutions obtained for surfaces illuminated by a uniformly

radiating circular disc (Sections 2.3 - 2.7).

To illustrate the procedure consider a surface shaded by a knife
.edge and illuminated by a module source such as that shown in Fig.26

For this example let %- = .5 and

D
/

> = Parameters associated with the total source.
(See Section 2.3 for definitions)

_?)U

D
N

Define

)5}
®,
®,
&),

Gc); |

V

= Parameters associated with the ith module

From Fig. 26 for any module

a = % » (3.2)
or
2.3 | L (3.3)
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o

Let

— D '
D, = 2a = 3’1 (3.4)
so that
(),
i 1 .
Referring'to Fig. 26 , in the region
9T a 1
0 <5 <35 &3 | (3.6)
6, re s ‘
i {31} =35 . (3.7)
®, 2L | | ‘
The centroid of the visible area is
ec 6c (D)N 1 9c ' 8)
e s TG G
(D)N D (D N
In the region
o
% < -D—T- < -2,;3 (-%) | - (3.9)



8. e |
{;_—T-} = 35" ; (3. 10a)
D N '

CIRECH

For this region the visible area from modules N, P and V must be considered
in calculating thé centroid of the visible area. Since fhe modules are

of equal and unifdrm intensity, the centroid is found using a weighted
average with the fraction of visible area from each module being the

weighting parameters.

5 5.
o e[ 68
7 = 3\ .‘L} A 2{.5-} > (3.11)
‘ ’gvn Ay P,V J
In the region
%5-%[5%2(’“5) - " (3.12)

ﬁr_ - ,fe_T 1l ' : | (3.13b)

T T ]
-:- = 3(1—-"’ (30 '33) .
{ P,V b. & , .
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In determining the centroid of the visible area modules N, P, V and

R must be considered. The calculation of Bc/D is detailed in Eq. (3.14).

| u‘n?’_c_]ﬁ_ [11{_}}{1
_9£ _ g(])+[g+§{ﬁ P,V zgl'}!’)v-' 3+3 _}R KT}R
c 2 2 '
1 + 24 — + = ]
‘ tATJP,V t"’J’R

BB
| 1+2{'§;7-}P,V*E"—}R o

g

]
oV

(3.14)
-T ac
: :—} and — for regions such that
i D
6
T o
D > 305
are found in a similar manner.
An actual solution is obtained as follows:
: 2]
Tyt )
(1) For a given position in the penumbra, 'gT’-t:T » calculate T)l

from Eqs. (2.3.21) and (2.3.25)

c:!,_.c

(2) Determine what region for the module source corresponds to the

found in step (1) and calculate the appropriate {?.-} for that
i

fl
D

.
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(3) Calculate g‘-—} and %-C—} as
. i

with

)

)

where

and

Q—} - la-dsnm (3.15)
| |

.3
< = 1_1 sin’Q
{%-}i T 273 a- simcosa . (3.16)

(3.17)

PRI}

Catculate D_c using the equation that is appropriaté for the
) 6

region determined by D—T in step (1). (For example, if -61
2}
found in step (1) is such that -é- < EI < %, use Eq. (3.11)
9 N
to calculate =< .)

D

Calculate the relative energy flux density as

cosf

Q ‘Z{%?}. COS[B-D{%-%B | (a.km

E {5—} = sum of normalized visible module areas
- Ay o
]

0
-65 ~ was determined in step (&)

-9F



4.0 RESULTS AND DISCUSSION

To assist in the following discussion and. for the sake of clarifica-
tion and consolidation, a consistent set of notation will be adopted in
this section. The notation used is defined below and pictorially des-

cribed in Fig. 27a; .p.97a

AB = Length of penumbra

A0 _ Location of conical axis measured from outer edge of penumbra
AB as a fraction of total penumbra length.
AX _ Location of general point in penumbra measured from outer edge
AB of the penumbra as a fraction of total penumbra length.

'gg - Location of a general point in ghe penumbra measured from the
AB conical axis as a fraction of total penumbra length
A

K; = Ratio of visible to total source area

x
m
P}
>
]

Incident angle, positive counter-clockwise
D = Solar field angle

Dl = Distance measured at conical axis from receiving surface to
bottom of skirt or bottom of rectangular cylinder.

D2 = Distance measured at conical axis from receiving surfact to top
of skirt or centroid of rectangular cylinder.

H = Half height of rectangular cylinder.

Q = Relative energy flux density

= Flux density in penumbra/flux density outside shadow.
Q' = Relative energy flux density due to specular or diffuse reflection
R = Half width of rectangular cylinder or radius of circular cylinder

W = Half length of skirt out of the plane of the p



T

Conical Axié

- RECTANGULAR CYLINDER

FIG. 27a
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a = Radiu; of module

d = Distance between ad]jacent module centers

%- = Shape factor for rectangular cylinder

8 = Same definition as BETA

GC ,

it Normalized angle to centroid of visible source area

EI_ _ Normalized angle to limiting ray trajectory defining visible

D area.

ﬂ]] = Angle measured from the zenith from a point in the penumbra ‘
to the top of the skirt : 4 ~

”12 = Angle measured from the zenith from a point in the penumbra
to the bottom of the skirt

622 = . Azimuth angle measured from normal to skirt from a point in

the penumbra to the outer edge of the skirt.

The shading bodies considered may conveniently be classified as

either:

(a) knife edge with skirt
(b) rectangular cylinder

(c) circular cylinder

. The single knife edge is.a special case of the “knife edge with skirt'.

With D1/D2 = 1, the “knife edge with skirt' degenerates to a single
knife edge. Similarly, with H/R = 0, the rectangular cylinder degene-

rates to a double knife edge.

e
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L.1 KNIFE EDGE WITH SKIRT

Black Skirt - Uniform Source

Energy flux density distributions in penumbrae corresponding to
what will be defined as the basic case, i.e., the case that approximates
the solar enviromment (D = 0.50) are presented in Fig. 27 p.]lq for para-
metric variations in D1/D2. The effect of incident angle and solar field
angle on the energy flux density distribution in the penumbra of a single

knife edge (D1/D2 = 1) is shown in Figs. 28 and 29, respectively.

To assist in using the relative flux density data it will be useful
to locate the position of the conical axis, %% , in the pénumbra. The
location of a general point in the penumbra relative to the conical axis

is simply

AX _ AQ X0 |
Ké‘ = AB - AB (“'0]-])

with %% given by Eq. (2.4.]3), and X0 being the distance from the

conical axis.

Figures 30 through 34, starting on p.113, indicate the maximum deviation

in relative energy flux density from the basic cases shown in Fig. 27 as
a function of D and B. The symmetry of the solutions are such that negative
incident angles result in negative maximum deviations of the same magni-

tude as that obtained for bositive angles.



Figures 30 through 34 may be uséd in evaluating the exactness necessary
for simulation of the solar field angle required in solar simulators to
reduce the thermal testing errors to an acceptable magnitude. For example,
referring to Fig. 30 p- 113, if a highly decollimated solar simulator,
say b = 150, is to be used, flat surfaces having incident angles (B) less
than 25° will have relative energy flux density disfribution which deviate
by no more than .05 from that obtained in an earth solar environment, and

depending on the accuracy criteria being used, acceptable testing results

‘might be obtainable. However, flat surfaces having incident angles such

that B > 60° will have relative energy flux density distributions that
deviate by a minimum of .15 from that in an earth solar environment and:

highly inaccurate testing results would be obtained.

Appendix B, under separate cover, contains a set of tables defining

the relative energy flux density in the penumbra of a knife edge with a

black skirt as a function of position in the penumbra, %%3 geometry of

the skirt, D1/D2, incident angle, B, and solar field ahgle, D.

_Specular Skirt - Uniform Source

The effect of adding a specular surface (reflecténce = }.0) to the -
skirf is such that thé skirt becomes ineffective as a shading body and the
relative energy density distribution can be obtained by considering a knife
edge located at the lower edge of the skirt, i.e., located at Dl and using
the distribution corresponding to a "‘knife edge with black skirt" in

Appendix B with DI/D2 = 1.0

-100-
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Diffuse Skirt - Uniform Source

In order to gain an appreciation of the magnitudes of the energy flux
density arriQing at a receiver from a diffuse skirt, it will be helpful

to examine some extreme cases.

"First, it should be noted from Eq. (2.4.46) that the energy flux
density varies approximately proportional to D, the solar field angle.
Consequently, decreasing the solar field angle will reduce the energy”

flux density received in the penumbra from the skirt.

Assume that the skirt is semi-infinite, that is, that it extends an
infinite distance to each side, and from the receiver upwards to infinity.
Also, assume a solar field angle of 15°, 8 = 0, and D1/D2 = 0. Now the

angles used in Eq. (2.4.46) become

By = 0
Bl = 7
By = 7
and
" .2122;.2618 (Ex 1. - 0)

= .01389

Thus, it can be seen that even for a semi-inflnite skirt, the energy flux

density received from the skirt is less than 1.4% of that being received

im
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from the source outside the penumbra. In actuality, it should be noted

that since ﬂl' will always be less than, or equal to one-half the solar

' field angle, the skirt, for all practical purposes, will always appear to

be infinitely high relative to a point in the penumbra. 1If the skirt has
a width which is twice its height, or more, (W/D2 2;1) the skirt will f
appéar to the recé?vef'to‘be approximately infinitely wide. This condi-
tion yields a value of Q; = .0123 at the outer edge Af the penumbra and

rises to .01389 at the skirt for the same conditions as above, except

: i b i r_b.. T '
that ﬂ]] varies from D/2 to 0, and ﬂ22 varies from 5 =3 to5. Q' has

thus varied by less than .002 from the semi-infinite case. This variation
will be even less for smaller solar field angles. For D1/D2 = 0 and B = O,
a good approximation for Q' is

.01389 D ﬂzz

Qe = = .03378 D 29 (5.1.2)

-26‘8 x.’—;‘ ‘ l /

The manner in which Q' varies with B can be seen by again referring
to Eq. (2.4.46). Positive B's will reduce Q' and negative B's will increase
Q'. In order to determine an upper limit for Q' when B is negative, let

the skirt be inifinite in extent and set the other parameters as follows:

DI/D2 = ©
D = 1I5°
,,= 0
b,= T
¢22= m/2
B = -@/2-D/2) = -82.5°

—tYna
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The calculations yield
Q' = .01389 x 15.1916 = .2109

The augmentation due to the skirt has .increased by a factor of 15 compared-
to Q' for B = 0, Snd now represents a sizable percentage. An implied
assumption consistent with the analysis presented in this report is that
the dimension of the plate normal to fhe plane of interest may be consi-

dered large such that in Eq. (2.4.56), W/p, —>  and 8,,—> /2.

22

Investigation of the energy distribution in the penumbra as a function

of incident angle, B, with ﬂzz = /2 and D1/D2 = 0 indicates that the

.distribution is essentially uniform. The magnitude of the relative

energy flux density with D1/D2 = 0 and D = 15° as a function of B is shown

in Fig.35 p.118. !

If the skirt is raised from the surface, i.e., D1/D2 > 0, the energy

received from the skirt is decreased. If the receiver is horizontal,

B = 0, the energy received from thecskirt becomes zero at the point directly
beneath the skirt rather than reaching‘the max imum value_of .01389 as was
the case for D1/D2 = 0. The mathematical reason for this is that “12
decreases to zero rather than remaining at a constant:va]ue.of /2.

The physiécal interpretation is that a point on the receivér‘directly
beneath the skirt can no longer see the illuminated surface of the skirt.
This does not happen when D1/D2 = 0, since the receiver and the skirt

become coincident at that point, and Q' becomes the maximum value of the

relative energy flux density being radiated at the surface of the skirt.

i Falel



Figure 35 p.118 indicates that for incident angles greater than - 60°
® > -600) less than .05 augmentation in relative energy flux density

due to diffuse reflection from the skirt is possible.

As previously noted, variations in relative energy flux density due
to diffuse reflection from the skirt are approximately proportional to D
so that Q' in Fig. 35 represents maximum augmentations for the range of

solar field angles considered in this report.

1 - 4,2 RECTANGULAR CYLINDER

] : Black Rectangular Cylinder - Uniform Source

L . As pointed out in Section 4.0, the rectangular cyHnder degenerates

to a double knife edge for H/R = 0. Figure 36 , p.119 shows the effect

of the shape factor, H/R, on the relative energy flux density in the penum-

bra of a rectangular cylinder for a horizontal receiver ( = 0) and a solar
P field angle of 15°. Referring to Fig.36, note that for the range of shap;

i | factors (H/R) considered, the shape factor does not significantly effect

the energy distribution from that corresponding to a double knife edge

(H/R = 0). Therefore, in order to determine the effect of some of the other
significant parameters,>a double knife edge will be used. The effect of

‘solar field angle and posftion of the double knife edge on the energy

distribution is shown in Figs. 37 and 38 (pp.120 and 121) respectively.

The effect of incident angle on the distribution is shown in Fig. 39 p.122.




teristics of a diffuse skirt (see Section 4.1). Therefore, for posit

To assist in using the relative flux density data, it will be useful
to locate the position of the conical axis in the penumbra, %% . The
location of a general point in the penumbra in terms of the distance from

the conical axis is given by Eq. (4.1.1) with %% given by Eq. (2.6.53).

Appendix é, under seﬁarate cover, contains a set of tables defining
the relative energy-flux density in the penumbra of a black rectangular -
cylinder as a function of position in’the penumbra, %% , shape factor,
H/R, location of the rectangle relative to the receiver, D2/R, incident

angle, B, and solar field angle, D.

Specular Rectanqular Cylinder - Uniform Source

The effect of adding a specular surface (reflectance = 1.0) is such
that thg sides of the rectangle become ineffective as shading surfaces,
i.e., results are independent of H/R and the relative energy density can
be obtained by considering a double knife edge at DI, the lower edge of
the rectangular cylinder. The energy distribution corresponding to a
;pecular rectangular c?linder may be determined using Appendix B and the

distribution for a black rectangular cylinder with H/R = 0 and D2/R = DI/R.

Diffuse Rectangular Cylinder - Uniform Source "

Each diffuse side of the rectangular cylinder will have the charac-
Ve
incident angles (B > 0) the energy augmentations due to the left d

face of the rectangle will be negligible (less than 1.4%). A similar

aansr



condition exists for 8 < 0 in reference to the right diffuse face of the
rectangle. Furthermore, from Fig. 35, p.118 for -60° < é < +60° tess

the .05 augmentation due to diffuse reflection from either face is possible.

- 4.3 CIRCULAR CYLINDER

Black Circular Cylinder -~ Uniform Source

The analysis of Section 2.7.1 indicated that the circular cylinder

" degenerated to a double knife edge located at the diameter of the cylinder

in as far as the energy distribution in the penumbra was concerned. This
result is really not too surprising since, by reference to Fig. 21, p. 7ha,
the effective portion of the cylinder (ACBE) can be approximated by a

rectanqular cylinder with a shape factor given by

D
w_ Rz _»p
R R 2

Since D < 15° (.2618 radians)

H
R < . 1309

An indication of the effect of this shape factor is given in Fig. 36,
p- 119 where it is seen that the cylinder closely approximates the double

knife edge.
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Specular Cylinder - Uniform Source

In the analysis of the specular cylinder it has been assumed that the
geometry of the cylinder and receiving surface is such that the incfdent

angle is limited by
0> > -cos-](R/DZ) (%.3.1)

The development of Section 2.7.2 indicates that the percent augmen-
tation in energy is directly proportional to the factor a/eT. ‘From Eq.
(2.7.41) and Fig. 22 it is seen that the critical parameter for any given
point in the penumbra is the position of the cylinder relative to that point.

Unless the point at which the flux density is of interest is nearly tangent

- to the reflecting surface, the increase in energy will be negligible. For

example, a horizontal receiver (8 = 0) illuminated by a uniform source
with D = 15° will experience a maximum increase in energy flux density of
about 3% at a distance of one cylinder radius (D2/R = 1). If the cylinder

is raised from the surface such that D2/R = 10, and the surface remains

_horizontal, the augmentation decreases to about 1%. Furthermore, with

D2/R = 10, unless the receiver has an attitude such that B is less than
-330, less than 3% augmentation is possible. A comparison of the relative
energy flux density distribution due to specular reflection and direct

irradiation is shown in Fig., 40, p. 123.

The reason for the relatively small energy augmentation due to specular
reflection from the cylinder as compared to the specular skirt is the posi-
tive curvature of the cylinder and the resulting divergence of the reflec-

ted rays. S ' -
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It is apparent from Eq. (2.4.44) and (2.7.59) that it is the angles
subtended by the diffuse source relative to the receiver that is of pri-
mary importance in determining the extent of relative energy flux density
augmentation in the penumbra. It is to be expected then, that just as the
augmentation is relatively high in the case of the diffuse skirt when the
receiver is rotated to large negative angles, the augmentation is also
going to be significant under similar circumstances for the diffuse cylin-
der. When the receiver is at an attitude of -82.S° and is tangent to the
cylinder, the augmentation is approximately 11%. This calculation;
which resulted in the upber }imit in terms of specular augmentation, was
made assuming that the cylinder is infinitely long, that the solar field
angle is ISO, and for 5 uniformly illuminated strips on the pertinent
portion of the cylinder. Hypothetically, if the receiver could be placed
closer to the vertical portion of the cylinder, the augmentation would
approach that of the flat skirt, 21%. The lower augmentation for the cy-
linder reflects the effect of the curvature of the cylinder surfacg. The
greater illumination of the upper portion of the cylinder is compensated
for by the fact that the receiver sees that portion of the cylinder at
low angles while the illumination of the lower portion of the cylinder

decreases to zero. Therefore, only a small portion of the cylinder is

effective in radiating energy to the penumbra.

Another calculation was made for a receiver angie of B = -70°%. The

augmentation proved to be approximately 0.3% for this case. Thus, the

e

LNR_




augmentétion decreases very rapidly as the receiver angle decreases.
This is to be expected, since the angle subtended by the portion of
the cylinder which is radiating to the penumbra decreases rapidly, at

first, as the receiver is moved away.

_ Therefore, it is concluded that for all but the cases in which the
receiver is tangent to the reflecting portion of the cylinder, the in-
crease in relative flux density due to specular reflection will be ne-

ligible.

L.L SINGLE KNIFE EDGE ~ MODULE SOLAR SOURCE

Using the principle of the replacement of a sourée by an equivalent
point source located at the centroid of the visible area, the moduie
source may be represented by a vector having a magnitude of A/AT and
direction Bc/b. The variation of area ratio, A/AT’ and angular centroid
shift, GC/D, for the module solar model considered in tﬁjs report fs

.

shown in Figs.'kl and 42, pp. 12k and 125. .

A comparii%ﬁ of relative energy flux density distributions corres-
o
ponding to uniform and module solar simulation models is presented in

Fig. 43 and 44 on pp. 126 and 127.

As one would expect, the solution for the module solar models
represent perturbation about the solutions corresponding‘to a uniform
source. However, even for the extreme case of a/d = .25, the maximum
deviation in the distributions corresponding to uniform aqd module solar

models is less than .07 in relative energy flux density.
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Relative Intensity in the Penumbra of a Single Knlfe
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Comparison of Visible Area and Angular Centroid Shift for Module and

Uniform Solar Models, a/d = .5
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APPENDIX A

EFFECT ON SOLUTIONS OF A KNIFE EDGE FIXED AT THE CONICAL AXIS
AS COMPARED TO A VARIABLE POSITION KNIFE EDGE

In the solution of shaded surface problems, use has been made of
"equations pertaining to a single knife edge (Eqs. (2.3.1)through (2.3.6)).
The solutions obtained using these equations correspond to relative energy

flux density at a point in the penumbra as the knife edge is moved across

the receiver. However, for other shaded surfaces, the knife edge is con-

sidered fixed at the conical axis and energy flux density distributions in

the penumbra are determined.

“

The use of the single knife edge equations will introduce an error
because of the angular differences involved for solutions corresponding to
a fixed point in the penumbra as compared to a moving point in the penumbra.

A comparison of the two conditions is shown in Fig. Al. (See next page.)

From Fig. Al, point P and point x ''see' exactly the same fraction of
the total source area. However, the angle between the power vector and
surface normal vector are different. Referring to Fig. Al, the angles

between the power vectors and surface normal vectors are given as

e

{3-9 }:J(
¥, = tan 2 cl. - (A1)

L_ X

i{% - 9;1 R + ox | | (a2)

{ —d

*2 = tan

=1



1". | FIG. Al -

From geometry

ox = ab - ao - xb

For R>>d
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N

1

Direction of E

(A3).

(AL)

(A5) !



i i e b Yt

and

xb=5-ab

AT

(ns)

where KT is the fraction of the total ‘source area seen by x.

Substituting Eqs. (Ah4), (AS) and (A6) Into Eq. (A3) and combining
Eq. (A3) and (A2) yields |

‘ Dl _A
v, = tan”' {%-ec}+ d:‘és_ %}T} (A7)

Since 0

IA

P>
IA

D A : o
7{‘5 - KT < 1 o < 15)
and for R >> d, Eq. (A7) reduces to

v, = tan’| {5’- "c} =¥ | ) (A8)

Tﬁerefore, for R >> d, the angular Ldifferem‘:es associated with solutions
for a fixed point in the penumbra as compared to a movihg point are ﬁegli-

gible and the cosine of the angle between E and dA ‘ can be taken as
[ - e R '
cos{-:% -D {-;- - BE}J | ' (A9)
o .

where D_c corresponds to a given A for the single knife ‘e‘cl'ge.
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APPENDIX B

RELATIVE ENERGY FLUX DENSITIES IN THE PENUMBRAE
OF VARIOUS SHADOWING OBJECTS

(Under Separate Cover)



